GR2HQ cards to bureau....


K1024_SNV35146275 GR2HQ Cards completed this morning and in bundle destined for the RSGB Bureau at the end of this week.

I have no outstanding bureau cards at all now so if you requested one, it must be in the system by now!

Don't forget, if you need a card from any station I manage, then please use the OQRS system which will cut down the time in which you receive your card by half, making it far more efficient way to obtain the confirmation.

'New Horizons' Becomes Closest Spacecraft to Approach Pluto


FitCheck1NASA’s New Horizons mission reached a special milestone yesterday on its way to reconnoiter the Pluto system, coming closer to Pluto than any other spacecraft.

It’s taken New Horizons 2,143 days of high-speed flight – covering more than a million kilometers per day for nearly six years—to break the closest-approach mark of 1.58 billion kilometers set by NASA’s Voyager 1 in January 1986

“What a cool milestone!” says New Horizons Principal Investigator Alan Stern, of the Southwest Research Institute. “Although we’re still a long way — 1.5 billion kilometers from Pluto — we’re now in new territory as the closest any spacecraft has ever gotten to Pluto, and getting closer every day by over a million kilometers.

Now New Horizons, which is healthy, on course and closer to Pluto than Voyager ever came, will continue to set proximity-to-Pluto records every day until its closest approach – about 7,767 miles (12,500 kilometers) from the planet – on July 14, 2015.

“We’ve come a long way across the solar system,” says Glen Fountain, New Horizons project manager at the Johns Hopkins University Applied Physics Laboratory. “When we launched [on Jan. 19, 2006] it seemed like our 10-year journey would take forever, but those years have been passing us quickly. We’re almost six years in flight, and it’s just about three years until our encounter begins.”

From New Horizons’ current distance to Pluto – about as far as Earth is from Saturn – Pluto remains just a faint point of light. But by the time New Horizons sails through the Pluto system in mid-2015, the planet and its moons will be so close that the spacecraft’s cameras will spot features as small as a football field. image_full

New Horizons is currently in hibernation, with all but its most essential systems turned off, speeding away from the Sun at more than 55,500 kilometers per hour. Operators at the Applied Physics Lab will “wake” the spacecraft in January for a month of testing and maintenance activities.

Check the New Horizons homepage for more information and updates en route to Pluto:

http://pluto.jhuapl.edu

Qsl cards to Bureau (or Direct).......



K1024_SNV35144Qsl cards processed:

4.5 (3 x 1.5Kg) to the
RSGB Bureau plus, 1.5 Kg to JARL; and 1.5Kg Direct to World Bureau's (via M0URX)....these included;


V55A - 136
GB1HI
- 127

GB1TAN - 76
GR2HQ -
135

M0BZH - 8
PX2C - 27
PYMTV - 13, PW2D - 43, G3SZU - 1 M0OXO - 134, MR0OXO - 15, M0IAA - 3, MR0IAA - 1, RA3CQ - 12, G4RCG -32, GR4RCG -6, GB6WRS - 4......and a further 115 letters Direct from OQRS and Post Mail for V55A and 47 other Direct requests for various other cards.

V55A Cards received and mailed.......


K1024_V55AfrThanks for all the requests for the V55A Cards.

The Qsl Cards arrived this morning and all will be mailed 30/11/2011.

127 Cards have been sent Direct (received via OQRS or Post Mail) and 149 will be sent direct to your World Bureau's this week.

If you have any questions about this or any other station I manage then please drop me a line and I will get back to you asap.

Thanks, Charles

MC0SHL - StrumbleHead Group update....


2011view8Well where have the MC0SHL Team been of late? Would it be true to say we have been quiet since Ramsey Island in July? Not really! This update from our fellow Member Chris G1VDP;

Well we have been a little quiet here at the Strumble Head DX & Contest Group, although we have all been busy with daily life.

Tim M0URX and Charles M0OXO are busy with the 4W6A QSLing & V55A and are awaiting the cards from the printers - hopefully within the next week so they can be posted out and then the mammoth task of the T32C Qsl Cards for the 210,000 they worked will be on the horizon, busy times!

Ant MW0JZE has been inundated with requests for Hexbeams after the success of the antenna on the 4W6A expedition, and as he only builds them to order he now has a nice waiting list. He also had a go in the CQWW Phone contest on 10M, again using his Hexbeam only.

Tony G4LDL has also been busy with his duties following the trip to T32C with the FSDXA team, again I understand he has been on QSLing duties as part of the team.

Rob MW0RLJ has been busy with is work on the farm, carrying out maintenance around the fences and along with getting the fields ready for next years crops he has been re-vamping the Club Shack!

Chris G1VDP has started a job where he works funny hours, starting at 01:00 and finish at 12:00. This is no good for DXing as he is away in the mornings for the Pacific openings, and asleep in the afternoons for the Carribean, South, Central and North American openings.

Oli's VK8DX is still down in Australia and is busy in his work down there. mc0shl_logo

And finally Villiam OM3AAO has been busy with his holiday cottage business in Slovakia. He also entered the CQWW Phone contest from his home station and was heard by all the other guys making at least one QSO with us all.

The boys are also planning to gather at the farm for New Year, or as many as can get there will. They will also have their wives and partners with them so it may be that they do not get on the air as this is going to be a social gathering for the families, and as usual photo's will follow.

One final thing. SHDXCG is a closed club and we do not accept new members unless invited in to the group, so any of you who try to join on CLUB LOG will not be accepted!!!!!


Thanks to Chris G1VDP for the update!

7Z7AA - All time new IOTA now Qrv...


7z7aa-isolaJabal Al Lith IOTA AS-191 (Arabic: الليث‎) a coastal island in western Saudi Arabia, now QRV on most Bands.

Location:
E40 08 12 N19 57 48
WW Locator: LK09bx

Dates
From 17 Nov 2011 to 25 Nov 2011


Bands
10m 12m 15m 17m 20m 40m 160m Modes SSB CW RTTY

Rig (power)
6 Transceivers 200 watts only

Antennas

1 Spiderbeam
1 Tri-Band Yagi
1 5 Band Rotary Dipole
1 5 Band Vertical
1 5 MiniBeam
1 2 Element Vertical 40M

QSL via 7Z1CQ

V55A Cards now at Print Shop.....


K1024_V55AfrThanks for all the requests for the V55A Cards.

The Qsl Cards have been designed and are currently with the Printer at UX5UO Qsl Cards in the Ukraine.

Once arrived here in the UK, all OQRS/Paypal and Direct/Post Mail will be processed and mailed within 24 hours. OQRS/Buro will follow within 48 hours.

Please check back on this page from time to time for an update of when they are received and under process.

Thanks, Charles

9N7MD Dxpedition growing close...


9N7MDThis received from and on behalf of the team;

Less than 24 hours before the take off. The team is in a very good mood and the "reconnaissance patrol" (XE1L) sent good news from Nepal. The weather is warm and clear and the early tests show good signals incoming to our location. Sunspot figures are even better and we are really confident to have the bands in excellent shape for DXing! Check the propagation charts (http://www.mdxc.org/nepal2011/propagation) by IK8LOV to find your window.


A great job has been made by our members in Kathmandu with the officers of the Communications Ministry to clear all the necessary steps to get the licence: for the first time in Nepal's history we will have a multi-operator licence to operate on ALL the HF ham bands. But greater news arrived in the very last hours: for the first time in history we will have the official permission to use the 6 meters band from Nepal, without restrictions! This will fulfill all the DXCC requirements for a top wanted country in the magic band!

As we already have team mates in Nepal right now, the main group will land in Kathmandu on Sunday evening. The last member to join will be Adhi YB3MM, arriving the 14th November. Since it's impossible to
announce a start time, we hope to be on the air as quick as we can. Once our stations will be QRV, they will be populated immediately by enthusiast operators to spread out the pile-up and ready to give a
chance to work Nepal in your missing slot. Don't forget the Nine-November Trophy, indeed!

We will try to put the log online everyday. Please take in account that the internet connection cannot be always efficient and we will do our very best to provide an updated log. Please follow the DX Code of Conduct and follow its simple rules to have fun working us. If you do have any questions, please contact our pilots and stay tuned on the website for more exciting news from the top of the World.


N.B. Click Logo Banner above to visit the 9N7MD Website!

4W6A Cards designed.....


The design of the four sided QSL card of the recent 4W6A DXpedition of Timor-Leste OC-232 was released this week.

These comments courtesy of Tim M0URX Qsl Manager & Team 4W6A member of the trip;

4W6A DXpedition maybe over, but work continues to ensure that the QSL requests are processed. Currently over 32% of the log has now been processed for QSL either direct or bureau. Max ON5UR has now designed the QSL card that will be sent to all direct requests. Bureau requests will receive a two sided QSL card.

The QSL card shows the team in front of the 4W6A shack. On the back of the QSL card, team member Oliver stands on the beach front with the antennas behind him. Inside is the photo of the G3TXQ Broadband Hexbeam by MW0JZE at sunrise on Atauro Island.

QSL cards are expected to be posted out towards the end of November.

QSL-4W6A














QSL-4W6A-BACK

A Crack in the Pine Island Glacier Ice Shelf



After more than two weeks of successful flights over Antarctica and its surrounding waters and sea ice, one of the more interesting things NASA's Operation IceBridge team has seen this year is a large crack running across the floating ice shelf of Pine Island Glacier. The team observed the crack on the DC-8's Oct. 14 flight. The flight was designed to get better measurements of the region around the ice shelf's grounding line -- where the shelf meets the landmass under the water. It was also flown to collect data along lines that a ground-based expedition will traverse in the coming months.

That data was collected, as expected. What wasn't expected was the crack.

Pine Island is one of the largest and fastest-moving glaciers in Antarctica. It has captured scientists' attention for years because of the rate at which its ice is thinning. The ice shelf thins, the grounding line retreats and the speed of the glacier increases. As it sits on bedrock below sea level -- West Antarctica is the last place with such so-called "marine glaciers" -- and drains about 10 percent of the West Antarctica ice sheet, scientists are concerned about the impact Pine Island's continued thinning will have on sea level.

Ice shelves naturally calve icebergs to shed ice that flows from the landmass to the sea. However, given Pine Island's prominence as a target of study for glaciologists, the crack is at the very least an interesting observation.

"It's part of a natural cycle, but it's still very interesting and impressive to see up close," said IceBridge project scientist Michael Studinger. "It looks like a significant part of the ice shelf is ready to break off."

The IceBridge team made a preliminary calculation that the area that could calve in the coming months covers about 310 square miles (800 square kilometers), Studinger said.


Peter Rejcek, Editor of The Antarctic Sun, wrote a piece about the crack that notes its location is about nine miles north of where a largely National Science Foundation-funded team, led by Bob Bindschadler of NASA's Goddard Space Flight Center, will drill this December and January. The team will put instruments below the ice shelf to provide data about ice sheet-ocean dynamics.


After arriving at the airport about 7 am, we faced a tough weather situation with clouds across almost all targets. In the end, we decided to head out towards a feature called Recovery Glacier – really an ice stream – that has some unique characteristics that make it worth the long flight there and back and the fuel we need to burn. For background, Robin Bell at Lamont-Doherty Earth Observatory at Columbia University led a paper that got published in Nature (2007) where we documented that this fast flowing ice extends deep inside East Antarctica. It also widens as it goes inland. Only the Lambert Glacier and its adjoining Amery Ice Shelf can really compare to the extent of the Recovery Glacier with the Filchner Ice Shelf. Its scale alone makes understanding the Recovery Glacier important. Because of its isolation from research stations on the continent, it is also rarely measured either from an airborne platform or traverse.

The ice stream of Recovery Glacier distinguishes itself from slower-moving ice by its shredded, rough appearance. Credit: Christopher Shuman/NASA, UMBC/JCET

In the Nature paper, we documented that the Recovery widens its velocity field upstream most likely because of some unique characteristics at the ice-bedrock interface, including some probable lakes – trapped pockets of water or very wet sediment basins. Even some distinct geologic edifices penetrate up into the overlying ice. We showed that these features are located where the ice sheet distinctly changes in character. Here it flattens, accelerates and forms flow features visible at the ice sheet's surface.

Only two ground traverses have reached the Recovery, the US-UK South Pole to Dronning Maud Land effort in 1965-1966 and the Norwegian-US International Polar Year program in 2007-2009. So today’s mission and one earlier this season have taken advantage of the DC-8's long range to get a suite of geophysical sensors along and across it – to define its width, depth (using radar), elevation (using laser altimetry) and the area’s bedrock character including possible subglacial lakes (using gravity and radar). This mission focused on the lower reaches of the Recovery as it bends around the Shackleton Range, joins the smaller Slessor Ice Stream, and pushes off the bedrock to form the majority of the floating Filchner Ice Shelf. If you are trying to place it on the globe, today's research target is almost due south of the Atlantic Ocean.

The US Antarctic Research Program took part in the first traverse across Recovery Glacier in 1965-66. Credit: US Antarctic Research Program

With better luck, we’d see some of the Antarctic Peninsula as we fly to and from our base of operations in Punta Arenas, Chile. We crossed over the Larsen C ice shelf on our way back and it was obvious that the peninsula is once again covered in clouds. The glaciers of the Antarctic Peninsula are much smaller than the Recovery but have been changing dramatically recently. Some glaciers there have lost hundreds of feet in elevation and retreated inland in the past decade due to the collapse of their fringing ice shelves. For example, the Crane Glacier now flows freely into the ocean since the Larsen B ice shelf collapsed in 2002. The significance of ongoing changes to Antarctica’s fringing ice shelves is something that has only recently begun to be fully documented by researchers.

Punta Arenas is currently hosting a US Antarctic Program (USAP) ship, the ARSV Laurence M. Gould, that is doing research in the oceans off of Antarctica, as well as supplying the USAP’s Palmer Station. Punta Arenas is also a logistics hub for a number of other nations who have stations in the Antarctic Peninsula including the British Antarctic Survey (BAS). Two of their Twin Otter support aircraft were at the airport today and are quite distinctive in their black and red paint schemes. Even better though, one of my all-time favorite planes was also there this morning: a modified DC-3 equipped with skis for snow runways. There is just something timeless about its design with its nose up and tail tipped down with big tires under the engines. It reminds you of past explorers in remote Antarctica and reminds you to appreciate all that can be accomplished with it and other great aircraft like the DC-8.

NASA's DC-8 casts its shadow on a peak of the Shackleton Range during a flight to the remote Recovery Glacier region on Oct. 30, 2011. Credit: Michael Studinger/NASA


A Crack in the Pine Island Glacier Ice Shelf
Posted on Oct 26, 2011 09:26:34 AM | Patrick Lynch
0 Comments | | Poor Fair Average Good Excellent

A crack runs across the floating ice shelf of Pine Island Glacier in Antarctica, seen from NASA's DC-8 on Oct. 14, 2011. Credit: Michael Studinger/NASA

Note: IceBridge flew a second mission to the Pine Island region on Wed., Oct. 26. Look for more imagery of the crack coming soon. To see more pictures from the Oct. 14 flight, go to the NASA_ICE flickr page.

After more than two weeks of successful flights over Antarctica and its surrounding waters and sea ice, one of the more interesting things NASA's Operation IceBridge team has seen this year is a large crack running across the floating ice shelf of Pine Island Glacier. The team observed the crack on the DC-8's Oct. 14 flight. The flight was designed to get better measurements of the region around the ice shelf's grounding line -- where the shelf meets the landmass under the water. It was also flown to collect data along lines that a ground-based expedition will traverse in the coming months.

That data was collected, as expected. What wasn't expected was the crack.

Pine Island is one of the largest and fastest-moving glaciers in Antarctica. It has captured scientists' attention for years because of the rate at which its ice is thinning. The ice shelf thins, the grounding line retreats and the speed of the glacier increases. As it sits on bedrock below sea level -- West Antarctica is the last place with such so-called "marine glaciers" -- and drains about 10 percent of the West Antarctica ice sheet, scientists are concerned about the impact Pine Island's continued thinning will have on sea level.

Ice shelves naturally calve icebergs to shed ice that flows from the landmass to the sea. However, given Pine Island's prominence as a target of study for glaciologists, the crack is at the very least an interesting observation.

"It's part of a natural cycle, but it's still very interesting and impressive to see up close," said IceBridge project scientist Michael Studinger. "It looks like a significant part of the ice shelf is ready to break off."

The IceBridge team made a preliminary calculation that the area that could calve in the coming months covers about 310 square miles (800 square kilometers), Studinger said.

The team on the DC-8 observed the crack running across the breadth of the ice shelf. Credit: Michael Studinger/NASA

Peter Rejcek, Editor of The Antarctic Sun, wrote a piece about the crack that notes its location is about nine miles north of where a largely National Science Foundation-funded team, led by Bob Bindschadler of NASA's Goddard Space Flight Center, will drill this December and January. The team will put instruments below the ice shelf to provide data about ice sheet-ocean dynamics.

Rejcek writes:

Bindschadler had previously calculated the propagation of earlier iceberg-releasing cracks at less than 50 meters per day. This crack must have moved much faster across the ice shelf, he said via e-mail.

“The characteristics of the PIG crack that I find surprising are the fact that it is so far across the ice shelf after not having been observed up until the end of last season,” he said.

The location of the crack is near where past rifts have appeared in the ice shelf, according to Bindschadler. He estimated that a new, rather large iceberg will probably form in the coming months, if not weeks.

“I hope that our field team will have enough time to get onto the ice shelf and set up GPS receivers before the calving event,” Bindschadler said. “We’d like to measure if the ice shelf notices the loss.”

Ted Scambos, lead scientist at the Boulder, Colo.-based National Snow and Ice Data Center, agreed that it’s likely that the crack is part of a natural cycle.

“These are cyclical, occurring every few years, very similar in size and even shape,” said Scambos via e-mail. “As a cyclical process, they are not part of the real climate-change/ice-shelf disintegration story.”

In 2002, the Larsen B Ice Shelf on the eastern side of the Antarctic Peninsula disintegrated in spectacular fashion, losing about 3,250 square kilometers of ice in a single season. More recently, the Wilkins Ice Shelf on the western side of the peninsula has started to collapse. Scientists believe both events are linked to climate change, though some researchers have suggested that wave action from distant storms could have helped break up the Wilkins Ice Shelf.

“If something different happened this time; for example, the pace of calvings changed, or this one was farther upstream from the past ones, then it might signal some major change in the Pine Island system,” said Scambos, adding that the area is changing in other ways, but the rate of calving has been steady over the last few decades.

 


A Second IceBridge Experience: It Just Gets Better
Posted on Oct 22, 2011 03:02:54 PM | Patrick Lynch
0 Comments | | Poor Fair Average Good Excellent
By Nathan Kurtz, NASA's Goddard Space Flight Center and University of Maryland, Baltimore County

Looking back, I'm extremely happy that my second time on the IceBridge mission to the Antarctic was a much more intense experience than my first. Last year bad weather kept us grounded quite often and I was limited to going on three flights over the vast extent of sea ice that surrounds the continent. But this year we hit the ground running, well, flying I should say. There were many more flights, more thrills, more snow, more ice...or was there more snow and ice? In fact, one of the main goals of the IceBridge project is to find out whether the Antarctic is gaining or losing ice. While some regions are gaining ice and others are losing it, the question remains as to whether the sum of the parts is in balance. More importantly, how will the southern polar ice cover drive and respond to changes in the climate? How will these climate impacts affect humanity?

An apron of sea ice floats in front the Brunt Ice Shelf, seen on the first flight of the Antarctica 2011 campaign. Credit: Michael Studinger/NASA

With these questions in mind the DC-8 airplane used for IceBridge launched tirelessly day after day to provide some answers. The plane was loaded with instruments to get a unique look from the air that we cannot get with our eyes and hands. It's amazing for me to think about what great things just a bit of electricity powering the scientific instruments can accomplish (not to mention the massive amounts of coffee apparently fueling the instrument operators). Some electricity fed through an antenna mounted on the aircraft wings produces a radar pulse that can tell us how thick the snow is beneath us. Electricity through a different antenna produces a radar pulse that can tell us how thick the ice is. While even more electricity fed other instruments such as the lasers, gravimeter, and the often-times spectacular photography of all the beautiful areas we pass over.

Outcroppings near Marie Byrd Land. Credit: Michael Studinger/NASA

With all that sensitive equipment loaded on the plane our next step was to fly over interesting areas to measure. We started out with flights in the Weddell Sea to measure the thickness of the sea ice surrounding the Antarctic continent. Antarctic sea ice is a fantastic sight to behold as the strong ocean dynamics in the region create a wide variety in the types of structures that we see. Like a snowflake, no two views of the sea ice are ever the same. In some areas the ice is very consolidated with the ice floes constantly crashing into each other and creating human-sized ridges. In other areas the ice has moved apart, exposing the ocean to the cold polar air and creating intricate geometrical structures as the water freezes and gets stirred together by the wind and ocean.

It is freezing and dynamic processes such as these which determines how much sea ice there is surrounding the Antarctic continent. As a scientist, one of my goals is to use the data collected during these flights to determine how the sea ice is changing and if so, what is causing the changes? How will these changes in such a remote area impact the world at large? It is thought that changes in the sea ice cover will have a large impact on the global temperature by changing the amount of solar radiation absorbed by the Earth. But presently it is not well known how changes in the global temperature will affect the Antarctic sea ice cover. While one may expect warmer temperatures to reduce the amount of ice, it is also possible that complex feedback mechanisms between the ocean and atmosphere could cause the Antarctic sea ice cover to increase with a warming climate. Connecting the observations taken during these IceBridge flights to those from satellites over the past decade will be critical to determining what factors have and will play a part in impacting the ice. While it will take some time to understand what the IceBridge measurements are showing us, there are high hopes for learning a great deal from what has been done.

 

Path of the IceBridge sea ice flight over the Weddell Sea. Credit: Michael Studinger/NASA

While on my previous flights over sea ice with IceBridge we would often fly near the great ice shelves surrounding the Antarctic continent. To me, the great white ice sheets always looked foreboding, as if they were waiting to swallow up the airplane if we dared venture too far into the interior of the continent to spy on its secrets. This year during my first land ice mission to Pine Island Glacier I half-expected something terrible to happen as soon we crossed the threshold from the ocean to the continent. Thankfully, the plane held a steady pace as if it had absolutely no concern for where it was going. In fact, the plane ended up dutifully flying all over the continent carrying me to some of the most remote and hostile environments on the planet. On the way I saw desolate islands buried in ice, giant crevasses, flew perilously close to lonely mountains with peaks just barely reaching up from the 1+ mile thick sheet of ice covering the land, and so much more. But it didn't seem scary at all, in fact it was quite beautiful! Well, from 1500 ft above the ground everything looked beautiful. At times, the sensors in the plane showed surface temperatures below -50 F and winds blowing at more than 60 mph. Blowing snow was easy to spot with such strong wind. Perhaps not such a cheery and inviting environment to visit, but perched safely on the plane it was easy to appreciate the splendor of the world below. Interestingly, the map display on the plane showed nothing but an ominous black void beyond 80 degrees latitude, the edge of the world apparently. But the mapmakers have it wrong. While the bottom of the world is certainly a vast abyss, it is of white snow and ice rather than a black nothingness.

Given the enormity of the sheet of ice covering Antarctica it's hard to imagine that changes could also be happening to it. Yet, as I've learned many times throughout my experience with IceBridge, it takes sophisticated instruments to learn what is really happening there. With many more flights to go, and countless more hours spent by scientists looking at the instrument data, we will hopefully find out soon enough.



Flying Under A Satellite
Posted on Oct 14, 2011 10:20:01 PM | Patrick Lynch
0 Comments | | Poor Fair Average Good Excellent

By Michael Studinger, IceBridge Project Scientist, NASA Goddard Space Flight Center

Punta Arenas, Chile – Better understanding of changes that occur in the polar ice sheets and sea ice requires observations over many years. With Operation IceBridge we make sure that there are no gaps in these critical measurements. In particular, we "bridge" the gap in laser altimeter measurements from space between ICESat, which ended in 2009, and the follow-up mission ICESat-2, which will launch in 2016. Using data from these two satellite missions and combining them with our aircraft measurements we will be able to build a time series of measurements that spans 17 years. In order to build long time series we often have to combine measurements from different instruments and satellites and it is important to make sure we calibrate and validate these measurements against each other, which will allow us to detect changes in the polar ice sheets and sea ice. The goal of Thursday’s IceBridge mission into the Weddell Sea was to better understand how radar altimeter measurements from ESA’s CryoSat-2 satellite can be combined with laser altimeter measurements from NASA’s IceBridge satellites.

Scarred and chiseled sea ice in the Weddell Sea, where the DC-8 followed in CryoSat-2's tracks on Thursday's IceBridge flight. The DC-8's shadow appears as a dark speck in the lower right. Credit: Michael Studinger/NASA

With IceBridge we are in a unique position to answer these questions because we fly both kinds of instruments on the DC-8 aircraft. In order to compare our measurements we have to fly the DC-8 directly beneath the CryoSat-2 satellite and collect data at the same time in the exact same location. It sounds easier than it is. Many things have to come together to make this happen. First, the weather in the Weddell Sea needs to be suitable for our flight. We need a large, cloud-free area beneath us, which is very rare to find. Second, we need the CryoSat-2 spacecraft on an orbit that allows us to take off from Punta Arenas and fly the DC-8 on the satellite ground track at the same time the spacecraft passes overhead. Third, we need this location to be over a certain type of sea ice that is suitable for comparison of the different measurements. Last, but not least, the weather conditions in Punta Arenas have to be suitable for safe takeoff and landing. Today, we were facing very strong winds that have been close to preventing a flight. While we were flying over the Weddell Sea our colleagues informed us that the winds in Punta Arenas had become so strong that the G-V aircraft had to be moved to Puerto Montt because the wind conditions exceeded the safety specifications for safe parking on the ramp for the G-V. All in all, flying an aircraft directly beneath a satellite in one the most remote parts on Earth is far from trivial. Today, everything went well and the DC-8 flew along the CryoSat-2 ground track in the southern Weddell Sea while the spacecraft passed overhead. The ice conditions were just perfect.

After our rendezvous with CryoSat-2 we reversed course on the ground track to fly back on the same line for 130 kilometers. We did repeat measurements over the exact same segment of our survey line over the course of one hour in order to track the drift of the sea ice. Wind and ocean currents move sea ice floes around. We can estimate how fast and in which direction the sea ice is moving by correlating patterns in our data between the three passes. It is very difficult to make these measurements from space.

After reaching the northern end of our survey line we transit back to Punta Arenas, knowing that we accomplished another landmark sea ice mission for Operation IceBridge.

 


DC-8 joins G-V for Antarctic IceBridge flights
Posted on Oct 13, 2011 10:37:13 AM | Patrick Lynch
0 Comments | | Poor Fair Average Good Excellent


The Dryden-based DC-8 flight crew handles the plane on its first Antarctica 2011 flight. Credit: Michael Studinger/NASA


By Michael Studinger, IceBridge Project Scientist, NASA Goddard Space Flight Center

 

Punta Arenas, Chile – Today marks a milestone for IceBridge. For the first time, both NSF’s Gulfstream V (G-V) and NASA’s DC-8 aircraft took off from Punta Arenas for science flights over Antarctica.

The G-V, with NASA’s Land Vegetation and Ice Sensor (LVIS) on board, headed toward Evans Ice Stream, which flows into the southern part of the Ronne Ice Shelf in Antarctica.

The DC-8, with its suite of IceBridge instruments, headed toward the Weddell Sea to measure the thickness of the sea ice and the snow on top of it along two 1,700-km-long transects that cross the entire Weddell Sea from east to west. It’s like flying from Chicago to Miami and back at 1,500 feet above the ground. This mission is an exact repeat of two missions that we have flown in 2009 and 2010. The goal is to measure how much sea ice is being exported through the “gate” connecting the tip of the Antarctic Peninsula with Cape Norvegia and determine the changes that occur over time. The export of sea ice from this area is a major contributor to the total ice volume exported into the Antarctic Circumpolar Current.

The DC-8 takes in a stunning view of the Brunt Ice Shelf on its first Antarctica 2011 flight. Credit: Michael Studinger/NASA

The Weddell Sea encompasses a large area and the chances of getting such a large area cloud-free are small. We rely on several different weather forecast models, satellite imagery and meteorologists at the Punta Arenas airport to get a picture of the weather conditions in the survey area before the flight. It requires many years of experience to interpret the different pieces of information and make a decision in the morning whether we launch a mission into the Weddell Sea or not. There is not a single weather station in the Weddell Sea or nearby to provide observations we could use to confirm the model predictions. Imagine needing to rely on a weather forecast back at home that has no weather data between Chicago and Miami. During the flight we encountered the expected mix of clouds, fog and sunshine. We often were able to fly below the clouds and continue to collect data. All in all a great start to our Antarctic campaign.

 


Preparing for Punta Arenas
Posted on Oct 05, 2011 08:44:46 PM | Patrick Lynch
0 Comments | | Poor Fair Average Good Excellent

By Michael Studinger, IceBridge Project Scientist, NASA Goddard Space Flight Center

 

Dryden Flight Research Center, Palmdale, CA – Welcome to another Antarctic campaign with NASA’s Operation IceBridge. Over the next two months the IceBridge teams will be collecting data with two aircraft based in Punta Arenas, located at the southern tip of Chile. We have installed cutting-edge laser altimeters and extremely sensitive radars that will allow us to measure changes in thickness of the sea ice surrounding Antarctica. We will also be monitoring changes in the thickness of ice sheets and glaciers that cover 98% of the Antarctic continent.

 

NASA's DC-8 flies over Dryden Flight Research Center on a test flight Wednesday before next week's transit to Chile. Credit: Kyle Krabill/NASA

Before we can start collecting data over Antarctica we have to make sure that all installed sensors on NASA's DC-8 work and are calibrated. (The second plane in this fall's campaign, a Gulfstream-V operated by the National Science Foundation and the National Center for Atmospheric Research, has already landed in Punta Arenas and could start science flights as early as Friday.) In order to make extremely precise laser altimeter measurements of the ice surface elevation we use target sites in the Mojave Desert that we have surveyed on the ground to calibrate the instruments. El Mirage, a dry lake bed, not far away from Dryden’s Flight Research Center is a perfect target site to calibrate our laser. We also fly over the ramp at Dryden and over two ICESat ground tracks in the desert to make sure our equipment works. A second test flights takes us out over the Pacific Ocean, some 200 miles away from the coast, where we can switch on our radars without interfering with other systems. We use the radar signal that is bouncing back from the ocean surface to calibrate the radars. We did a couple of maneuvers at high-altitude over the Pacific Ocean to calibrate the antennas of the ice-penetrating radar systems that we will use to survey the sea ice, glaciers, and ice sheets.

 

The flight track of the DC-8 during a calibration flight over the Mojave Desert in California. Credit: Michael Studinger/NASA

In a few days we will be ready to go south. In previous years we have laid down the foundation for repeat measurements of many glaciers and ice streams in Antarctica. This year we will be re-surveying our previous flight lines in order to determine how much these glaciers have changed compared to previous years. We also plan to survey a few new areas in order to establish baseline measurements for future years and for the upcoming ICESat-2 mission in 2016.

The IceBridge teams have enjoyed working in sunny and warm California for a few weeks, preparing for our trip to Chile. We are looking forward to another successful campaign with exciting new data and spectacular Antarctic scenery. You can follow us on this blog and on Twitter at Twitter.com/nasa_ice.


Measuring Gravity From a Moving Aircraft
Posted on May 18, 2011 09:49:01 AM | Kathryn Hansen
0 Comments | | Poor Fair Average Good Excellent

From: Joël Dubé, Engineer/Geophysicist at Sander Geophysics, OIB P-3 Gravity Team

One of the instruments used in Operation IceBridge (OIB) is an airborne gravimeter operated through a collaboration between Lamont Doherty Earth Observatory of Columbia University and Sander Geophysics. Some people from other instrument teams call it a gravity meter, gravity, gravitometer, gravy meter, gravel meter, gravitron, or blue couch-like instrument. As operators of the gravimeter, we are referred to as graviteers, gravi-geeks or gravi-gods. This tells a lot about how mysterious and unknown this technology appears.

Let me summarize the basics of airborne gravity data acquisition for you.

But first, why is gravity data being acquired as part of OIB?

The earth's gravity field is varying in space according to variations in topography and density distribution under the earth's surface. Essentially, the greatest density contrast is between air (0.001 g/cc), water and ice (1.00 and 0.92 g/cc, respectively) and rocks (2.67 g/cc in average). Therefore, gravity data can be used for modelling the interface between these three elements. The ATM system (laser scanner) can locate the interface between air and whatever is underneath it with great accuracy. The MCoRDS system (ice penetrating radar) is successful at locating the interface underneath the ice. However, no radar system can “see” through water from the air. Hence, gravity data can help determine bathymetry beneath floating ice, either off shore or on shore (sub-glacial lakes). This in turn enables the creation of water circulation models and helps to predict melting of the ice from underneath. Also, airborne gravity data can contribute to increasing the accuracy and resolution of the Earth Gravitational Model (EGM), which is determined only with low resolution in remote locations such as the poles, being built mainly from data acquired with satellites.

Most people don't know that it is possible to acquire accurate gravity data from a moving platform such as an aircraft. Due to the vibrations and accelerations experienced by the aircraft, it is definitively a challenge! There are four key elements that make this possible.

1- You must have very accurate acceleration sensors, called accelerometers.

2- You must keep these accelerometers as stable as possible, and oriented in a fixed direction. This is a job for gyroscopes coupled with a system of motors that keeps the accelerometers fixed in an inertial reference frame, independently of the attitude of the aircraft. This is why the system we use is called AIRGrav, which stands for Airborne Inertially Referenced Gravimeter. Damping is also necessary to reduce transmission of aircraft vibrations to the sensors. The internal temperature of the gravimeter also has to be kept very stable.

This is all good. However, the accelerations we are measuring this way are not only due to the earth's gravity pull, but also (and mostly) due to the aircraft motion. And to correct for that:

3- You need very accurate GPS data, so that you can model the aircraft motion with great precision.

Despite these best efforts, noise remains, mostly from GPS inaccuracies and aircraft vibrations that can't be detected by GPS, so:

4- You have to apply a low pass filter to the data, since the noise amplitude is greatest at high frequency.

 

 

The AIRGrav system on-board the P-3 aircraft. Gravimeter (right), rack equipped with computers controlling the gravimeter and GPS receivers (center) and operator (left). Credit: Joël Dubé


Furthermore, a number of corrections have to be applied to the data before they can serve the scientific community. The corrections aim at removing vertical accelerations that have nothing to do with the density distribution at the earth's sub-surface.

The Latitude correction removes the gravity component that is only dependent on latitude. That is the gravity value that would be observed if the earth was treated as a perfect, homogeneous, rotating ellipsoid. This value is also called the normal gravity. Since the earth is flatter at the poles, being at high latitude means you are closer to the earth's mass center, hence the stronger gravity. Also, because of the earth's rotation and the shorter distance to the spinning axis, a point close to the pole moves slower and this will add to gravity as well (less centrifugal force acting against earth's pull).

Anything traveling in the same direction as the earth's rotation (eastward), will experience a stronger centrifugal force thus a weaker gravity, and the other way around in the other direction. Traveling over a curved surface also reduces gravity no matter which direction is flown, similar to feeling lighter on a roller coaster as you come over the top of a hill. This is known as the Eötvös effect and is taken care of by the Eötvös correction. This correction is particularly important for measurements taken from an aircraft moving at 250-300 knots.

The Free Air correction simply accounts for the elevation at which a measurement is taken. The further you are from the earth's center, the weaker the gravity.

To give you an idea of how small the gravity signal that we are interested in is with respect to other vertical accelerations that have to be removed, let's look at the following profiles made from a real data set. All numbers are in mGals (1 m/s2 = 100,000 mGals), except for the terrain and flying height which are in meters.

 

A visual summary of gravity corrections. Credit: Stefan Elieff


"Raw Gravity" in this diagram means that GPS accelerations (aircraft motions) have been removed from inertial accelerations. Notice the relative scales of the profiles, starting at 200,000 mGals, down to 20,000 mGals when aircraft motions are accounted for, down to 200 mGals after removing most of the high frequency noise, and ending at 50 mGals for Free Air corrected gravity. Free Air gravity is influenced by the air/water/ice/rock interfaces described earlier, and since OIB uses the gravity data to find the rock interface (the unknown), Free Air gravity is the final product. As a side note, for other types of gravity surveys, we usually want to correct for the terrain effect (the air/water/rock interfaces are known in these cases), so that we are left with the gravity influenced only by the variations of density within the rocks. This is called Bouguer gravity and is also shown in the figure.

Notice the inverse correspondence between flying height (last profile, in blue) and the profiles before the free air correction (going higher, further from the earth, decreases gravity), and the correspondence between terrain (last profile, in black) and the free air corrected data.


Now, let's look at some data acquired during the current 2011 mission in western Greenland.

 

Ice elevation (left), rock elevation (middle) and Free Air gravity data (right). Greenland 2011 flight lines shown in black. Gravity data is preliminary and is not yet available for scientific analysis.


The left panel shows the elevation of the rocks, or of the ice where ice is present. It is as if the water has been drained from the ocean. The middle panel shows only the bedrock elevation, both ice and water being removed. The data is from ETOPO1, a global relief model covering the entire earth. The right panel shows the Free Air gravity acquired in the last few weeks. Most channels, called fjords, are well mapped by the gravity data. It is interesting to see that the gravity data infers the presence of a sub-glacial channel (shown by the red arrow) where no channel is mapped (yet?) on the bedrock map. The most likely reason for this is that this particular region has not been covered by previous ice radar surveys (there are huge portions of the Greenland ice sheet that remain unexplored). Note that the MCoRDS ice radar data acquired as part of the current campaign will improve the resolution in this area and will enable for a better comparison of both data sets in the future.

Asteroid 2005 YU55 Update


601422main_2005_YU55_approach-428NASA scientists are tracking asteroid 2005 YU55 from the agency's Deep Space Network at Goldstone, California. for at least four hours each day from 6th thro 10th November.

Radar observations from the Arecibo Planetary Radar Facility in Puerto Rico will begin on Nov. 8. The space rock will make its closest approach to Earth on Nov. 8 at 3:28 p.m.

The trajectory of asteroid 2005 YU55 is well understood. At the point of closest approach, it will be no closer than 201,700 miles (324,600 kilometers) or 0.85 the distance from the moon to Earth.

YB26SEAG - 26th SEA GAMES 2011


YBDXC_YB26SEAG_Rev_4YB26SEAG is the Special Callsign for the 26th SEA GAMES 2011, Indonesia.

The Special Event Station is on the air November 11-17, 2011, all bands and all modes courtesy of YB Land DX Club operators.

QSL Manager : YB2DX / HANS.

QSL Direct : PO BOX 123 – PW – 58100 – Indonesia.

/MM from Spitzbergen (JW)...


image0021Lars Midtbø, LA2RRA is the cook on the “M / S Nordstjernen,” a ship for transport, built in 1956 and modernized in 1980, adapted to accommodate seafaring passengers traveling the old route to the Archipelago of Spitsbergen (JW).

image001Lars, when off duty works with antenna system and IC-7000 HF rig, while matching the low bands and working digital modes. You can also meet him on 20 meter SSB.

QSLs must be submitted via the bureau.

M / S Nordstjernen, built in the Hamburg, Germany shipyards in 1956, 80 meters long, 13 meters high, keel depth 5 meters .

8Q7CC - Furanafushi Island, IOTA AS-013


upcoming-8q7ccListen out for Cesare I0WDX in the next few days.

He will be active from Furanafushi Island, North Male Atoll, Maldives as 8Q7CC between November 2 – 11, 2011.

QSL is via his home call I0WDX.

Qsl cards to Bureau (or Direct).......

K800_SNV35141Qsl cards processed:

10KG (5 x 2Kg) to the
RSGB Bureau, 2 Kg to JARL;


GB1HI - 284
GB1TAN - 255
GR2HQ -
230

M0BZH - 20
PX2C - 62
PYMTV - 75
PW2D - 82
G3SZU - 37,
M0OXO
- 349,
MW0X
- 179,
MR0OXO
- 234,
M0IAA
- 10, MR0IAA - 8,GW8ASA - 3
, RA3CQ - 77, M0AID - 20, G4RCG -10, GR4RCG -70, G1WRS - 122......and a further 120 letters Direct from OQRS and Post Mail.


CQWW SSB looms, V55A make their debut....


v55a_logo_k2CQWW SSB is upon us this weekend and with the increased band activity now the higher bands are open, it promises to be an amazing weekend with lots of new DX.

One of the new Teams out this year are V55A in Namibia. It is their first outing this weekend and we all hope that all goes well for them. They will also have a logbook on-line courtesy of our favourite Clublog.

Also active with be Thomas and Fabio as PW2D and also Andre PY2MTV may make an appreance from home. Listen out for the guys and if you hear them please give them your support. GL guys!

(click the logo to the left for the V55A Log Search)

(Qsl for all above via M0OXO)

GB2HI Hilbre Island EU-120 ''The second coming''


By Kevin M0TNX (GB2HI);

''Wow!!
A massive “thanks!” to all the stations we worked this weekend, we decided to pull the plug an hour earlier than expected, we wanted to play radio with our own calls for a bit, and get some reports without the help of the GB2HI call. Here’s the story of GB2HI, October 2011.

As soon as we had finished operating in May, I knew I wanted to get back to Hilbre, not just because of the radio, but because of the sheer beauty of the place, it’s location both radio wise and ecologically. GB2HI was a green operation mart1this time, with the whole operation being run from a wind turbine on the Island. I had started preparing for Hilbre a couple of months ago, I knew from speaking with previous activators from 10 years ago that the Island had never had 160M activation, so being both a 160 and CW nut, I wanted to have a go! Preparations had gone really well, Martin and I had practised putting the 40 foot vertical section up, we had cut the antenna and tried it, all was good. The sunspots were going ballistic and we knew that we were going to have some success. Hilbre this time was determined to make us work for the contacts! Before I go any further, I would like to pass on a huge message of thanks to a few people who made a huge difference, without the help of these people, GB2HI was going to be a non-starter. Lee, G0DBE and his eldest lad, young Lee saved the day once again, more about this later, Ronnie G4DIY, for the loan of the radials and help and advice that is second to none, and last but not least, Keith, G3SZU, cucumber cool, knowledgable and always there when chips are down. Radio wise or not.

I had everything waiting at home, ready for Mart to pick me up when I received a call from Jo Hanick, the senior warden at Wirral Country Park explaining that there was no power available on Hilbre, could we use a generator.. This through me into a bit of an “ARRRRRGGGHHHH!!!” moment, as a) I had no generator, and B) the cost of the fuel along with other bits bought for Hilbre would push me over the edge financially.. For 10 minutes I had seriously thought of pulling the plug on the operation. First person I rang was Lee, G0DBE who kindly offered the loan of his 5KvA generator, and fuel can. I was sort of there, but how would we fit the genny, fuel cans and other bits in the car? Lee’s generosity came into play again when he offered to take the genny for us and pick it up. We got underway on time and arrived at the pick up point to find that Jo had managed to get an Electrician on to Hilbre to sort out the power problem, which took the pressure off, Green Hilbre was still go!
The Lee’s jumped in the Land Rover with us, as we were driven over with Matt, the Warden on duty to Hilbre. Matt is fantastic with his wildlife knowledge, and pointed out the various waders and wildfowl that we couldn’t pick up on. The Lee’s helped us get the mast started, and then had to leave as the tide was turning and they had to leave with Matt.
As the tide came in, it brought a weather front with it, blowing a hoolie, we struggled with the mast, Mart has got a picture on his phone of the mast bent at almost 90 degrees, I was struggling to hold the thing up. radialsWe worked under real pressure and managed after about an hour and a half to get the thing up straight! Changing winds however meant several re jigs of the 40 foot monster!

click here to read more...

Read more: GB2HI Hilbre Island EU-120 ''The second coming''

Comet Storm in a Nearby Star System


comet









NASA's Spitzer Space Telescope has detected signs of icy bodies raining down in an alien solar system. The downpour resembles our own solar system several billion years ago during a period known as the "Late Heavy Bombardment," which may have brought water and other life-forming ingredients to Earth.


During the Late Heavy Bombardment, comets and other frosty objects from the outer solar system pummeled the inner planets. The barrage scarred our Moon and produced large amounts of dust.

Scientists have spotted a band of dust around Eta Corvi that strongly matches the contents of an obliterated giant comet, probably destroyed by a collision with a planet or some other large body. The dust is located close enough to Eta Corvi that Earth-like worlds could exist in the collision zone, suggesting that planets like our own might be involved. The Eta Corvi system is approximately one billion years old, which researchers think is about the right age for such a hailstorm.

A second, more massive ring of colder dust located at the far edge of the Eta Corvi system seems like the proper environment for a reservoir of cometary bodies. This bright ring, discovered in 2005, matches the size of a similar region in our own solar system, known as the Kuiper Belt, where icy and rocky leftovers from planet formation linger. The comets of Eta Corvi and the Almahata Sitta meteorite may have each originated in the Kuiper Belts of their respective star systems.

About 4 billion years ago, not long after our solar system formed, scientists think the Kuiper Belt was disturbed by a migration of Jupiter and Saturn. This jarring shift in the solar system's gravitational balance scattered the icy bodies in the Kuiper Belt, flinging the vast majority into interstellar space and producing cold dust in the belt. Some Kuiper Belt objects, however, were set on inward paths that crossed the orbits of Earth and other rocky planets.

Thailand Floods - HF Operators requested......


article-2047832-0E50777300000578-598_634x388QST, to all Radio Amateurs
15 October 2011


World-wide HF operators are kindly requested to QSY away from 7.060-7.063 at all times due to use by Thailand hams during the massive flood emergency affecting millions of people in North and Central Thailand.

Today, the emergency is on-going with huge areas flooded of from a half to two meters of water, some areas are deeper and a few spotty areas are mostly dry in the region.

News estimates say that the flooding will continue for four to six more days, at its height, and subsidence will be over a month. Clean-up and rebuilding may extend more than a year. The majority of flood radio traffic is being carried on the two meter band by scores of ham volunteers, some of which have had their own homes inundated. It is impossible to estimate how many ham radio operators'
shacks are now affected, but the significant flooding covers huge swaths of the region as seen on http://www.neighborhoodlink.com/Rural_Training_Center-Thailand/pages.

The Thai National Club Station, HS0AC, home of the Radio Amateur Society of Thailand, is threatened tomorrow and is under watch. Timely updates can be seen at http://www.qsl.net/rast in English.

Reported by HS0ZCW, Charly

More Qsl Cards out this week......


K800_IMGQsl cards processed and ready for Bureau:


GB1HI - 321
GB1TAN - 290
GR2HQ -
330

M0BZH - 8
PX2C - 32
PYMTV - 35
PW2D - 52
G3SZU - 27
M0OXO - 249
GB0WFF - 177

Rockall 2012 - Postponed....


rockallFrom Col MM0NDX;

Much has happened since the first press release was issued on August 27th. A few days later, we got word that the 2009 MM0RAI/p Rockall team were again going to attempt an activation of EU-189 at the end of September. To cut a long story short, IOTA chasers will be aware that the Belgian team did eventually activate the island, with the aide of a converted navy rescue vessel and large inflatables – we congratulate MM0RAI/p on their achievenment as we all know how heavy the seas can be out there in Autumn.

With careful consideration and much deliberation, we have decided to postpone our intended activation of the islet for at least one year. This decision was not taken easily considering our planning and organisational aspects were going extremely well. Suffice to say, we believe an activation so soon after the Belgian effort now makes Rockall a less attractive target – that is the crux of our decision.

It is not lost on us that the majority of the world, outwith a proportion of Europe, still require EU-189 for their IOTA scores. With that in mind, this planned activity will not be cancelled, only postponed.

All donations will be refunded. We thank sincerely those kind operators and groups who pledged financial support.

What we can say is that another excellent location/target is now being organised. This involves a rare DXCC and IOTA. However, unlike MS0INT 2012 plans, we prefer to keep silent on this, and only release news and website one week before departure, sometime in mid-2012.

Monday the 20th. Web Design and Web Hosting. Do you need a Qsl Manager?
Copyright 2014

©